$S$-unit values of $G_n+G_m$ in function fields
نویسندگان
چکیده
In this paper we consider a simple linear recurrence sequence $ G_n defined over function field in one variable the of complex numbers. We prove an upper bound on indices n and m such that + G_m is S $-unit. This analogue already known results number fields.
منابع مشابه
interpersonal function of language in subtitling
translation as a comunicative process is always said to be associated with various aspects of meaning loss or gain. subtitling as a mode of translating, due to special discoursal and textual conditions imposed upon it, is believed to be an obvious case of this loss or gain. presenting the spoken sound track of a film in writing and synchronizing the perception of this text by the viewers with...
15 صفحه اولMultiple Zeta Values over Global Function Fields
Abstract. Let K be a global function field with finite constant field Fq of order q. In this paper we develop the analytic theory of a multiple zeta function Zd(K; s1, . . . , sd) in d independent complex variables defined over K. This is the function field analog of the Euler-Zagier multiple zeta function ζd(s1, . . . , sd) of depth d ([Z1]). Our main result is that Zd(K; s1, . . . , sd) has a...
متن کاملReduction in Purely Cubic Function Fields of Unit Rank One
This paper analyzes reduction of fractional ideals in a purely cubic function field of unit rank one. The algorithm is used for generating all the reduced principal fractional ideals in the field, thereby finding the fundamental unit or the regulator, as well as computing a reduced fractional ideal equivalent to a given nonreduced one. It is known how many reduction steps are required to achiev...
متن کاملArithmetic of Gamma, Zeta and Multizeta Values for Function Fields
We explain work on the arithmetic of Gamma and Zeta values for function fields. We will explore analogs of the gamma and zeta functions, their properties, functional equations, interpolations, their special values, their connections with periods of Drinfeld modules and t-motives, algebraic relations they satisfy and various methods showing that there are no more relations between them. We also ...
متن کاملUnit Computation in Purely Cubic Function Fields of Unit Rank 1
This paper describes a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in a multiplicative cubic lattice which is used for calculating the fundamental unit and regulator of a purely cubic number field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicationes Mathematicae Debrecen
سال: 2023
ISSN: ['0033-3883', '2064-2849']
DOI: https://doi.org/10.5486/pmd.2023.9439